Now that fundamental quantum principles of indeterminacy and measurement have become the basis of new technologies that provide secrecy between two communicating parties, there is a need to provide teaching laboratories that illustrate how these technologies work. In this article, we describe a laboratory exercise in which students perform quantum key distribution with single photons, and see how the secrecy of the communication is ensured by the principles of quantum superposition and state projection. We used a table-top apparatus, similar to those used in correlated-photon undergraduate laboratories, to implement the Bennett-Brassard-84 protocol with polarization-entangled photons. Our experiment shows how the communication between two parties is disrupted by an eavesdropper. We use a simple quartz plate to mimic how an eavesdropper intercepts, measures, and resends the photons used in the communication, and we analyze the state of the light to show how the eavesdropper changes it.
Read full abstract