Abstract
Now that fundamental quantum principles of indeterminacy and measurement have become the basis of new technologies that provide secrecy between two communicating parties, there is a need to provide teaching laboratories that illustrate how these technologies work. In this article, we describe a laboratory exercise in which students perform quantum key distribution with single photons, and see how the secrecy of the communication is ensured by the principles of quantum superposition and state projection. We used a table-top apparatus, similar to those used in correlated-photon undergraduate laboratories, to implement the Bennett-Brassard-84 protocol with polarization-entangled photons. Our experiment shows how the communication between two parties is disrupted by an eavesdropper. We use a simple quartz plate to mimic how an eavesdropper intercepts, measures, and resends the photons used in the communication, and we analyze the state of the light to show how the eavesdropper changes it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.