Intravenous application of pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified as a promising strategy for the treatment of type 2 diabetes. To generate a more applicable formulation, it was the aim of this study to develop a sustained buccal delivery system for this promising therapeutic peptide. 2-Iminothiolane was covalently bound to chitosan to improve the mucoadhesive and permeation-enhancing properties of chitosan used as drug carrier matrix. The resulting chitosan-4-thiobutylamidine conjugate was homogenized with the enzyme inhibitor and permeation mediator glutathione (gamma-Glu-Cys-Gly), Brij 35, and PACAP (formulation A). The mixture was lyophilized and compressed into flat-faced discs (18 mm in diameter). One formulation was additionally coated on one side with palm wax (formulation B). Tablets consisting of unmodified chitosan and PACAP (formulation C) or of unmodified chitosan, Brij 35, and PACAP (formulation D) served as controls. Bioavailability studies were performed in pigs by buccal administration of these test formulations. Blood samples were analyzed via an ELISA method. Formulations A and B led to an absolute bioavailability of 1%, whereas PACAP did not reach the systemic circulation when administered via formulations C and D. Moreover, in the case of formulations A and B, a continuously raised plasma level of the peptide drug being in the therapeutic range could be maintained over the whole period of application (6 h). Formulations A and B were removed by moderate force from the buccal mucosa after 6 h, whereas formulations C and D detached from the mucosa 4 h after application. The study reveals this novel mucoadhesive delivery system to be a promising approach for buccal delivery of PACAP.