The emerging connected vehicle (CV) technology has introduced the opportunity to improve traditional traffic signal operation. Real-time vehicle trajectory information (location, speed, and heading) from CV technology can provide information about the nearby traffic conditions which potentially can be utilized for enhanced traffic signal control operation. However, implementation of CV technology still is impractical due to the lower penetration rate of CV-enabled vehicles on the road and the limited deployment of vehicle-to-infrastructure (V2I) communications. This paper developed an approach to use vehicle trajectory data with traditional traffic signal controllers to improve intersection operational performance, even with the limited use or absence of V2I communications. Two signal control algorithms, the delay-based algorithm (DBA) and the weighted delay-based algorithm (WDBA), were developed to demonstrate delay optimization at a signalized intersection. The intersection was modeled in Vissim microsimulation, and simulation scenarios were tested for various traffic demands. Analysis results showed that both proposed algorithms outperformed existing free timing operation, and statistically significant improvement was observed in terms of vehicle delay, stop delay, and queue length.
Read full abstract