A generic fiber positioning strategy and a fabrication path are presented for microlens-fiber-coupled integral field units. It is assumed that microlens-produced micro-images are carried to the spectrograph input through step-index,multi-mode fiber, but our results apply to micro-pupil reimaging applications as well. Considered are the performance trades between the filling percentage of the fiber core with the micro-image versus throughput and observing efficiency.A merit function is defined as the product of the transmission efficiency and the etendue loss. For a hexagonal packing of spatial elements, the merit function has been found to be maximized to 94% of an ideal fiber IFU merit value (which has zero transmission loss and does not increase the etendue) with a microlens-fiber alignment (centering) tolerance of 1 um RMS. The maximum acceptable relative tilt between the fiber and the microlens face has been analyzed through optical modeling and found to be 0.3 degree RMS for input f-ratio slower than f/3.5 but it is much more relaxed for faster beams. Several options of fabricating fiber holders have been compared to identify cost-effective solutions that deliver the desired fiber positioning accuracy. Femto-second laser-drilling methods deliver holes arrayed on plates with a position and diameter accuracy of 1.5 um RMS, and with an aspect ratio of 1:10. A commercial vendor produces plates with thickness of 5 mm, but with similar (1 um RMS) positioning accuracy. Both of these techniques are found to be moderately expensive. A purely photo-lithographic technique performed at WCAM (a facility at the University of Wisconsin, Madison), in tandem with deep reactive ion etching, has been used to produce a repeatable recipe with 100% yield. Photo-lithography is more precise (0.5 um RMS) in terms of hole positioning and similar diameter accuracy (1 um RMS).
Read full abstract