Industry engagement, commonly implemented as a 12 week industry placement during a vacation towards the end of the degree, has traditionally been a provider-mandated component of externally accredited professional engineering degrees in Australia. Such placements are intended to bridge knowledge and capability gaps between academic study and engineering employment and contextualise the final phase of academic study. Changes in the composition of Australia’s engineering industries have made it progressively harder to source such placements. In-curriculum exposure to engineering practice has also been expected, but has been delivered with considerable variability. In 2014 the authors completed a national project, led by the Australian Council of Engineering Deans (ACED), with peak industry bodies and several partner universities, funded from the Commonwealth Department of Industry Workplace Innovation Program, to explore how improving industry engagement could contribute further to engineering graduates’ learning outcomes and employability. The data collected from the engineering students and employers, reported in this paper, can now be regarded as baseline data on industry engagement, against which subsequent developments can be referenced. For the first time, students’ ratings of the value of different methods for industry engagement are shown to be related to their ‘authenticity’. Several industry-inspired in-curriculum interventions were also trialled at partner universities. Guidelines for good practice were developed from melding the experiential findings with theoretical perspectives. In the years since completing the project, the accreditation body, Engineers Australia, has updated and intensified its focus on engagement with practice (including changing its language from ‘exposure’ to ‘engagement’), and many engineering faculties have significantly enhanced their models and requirements for work integrated learning and industry engagement. This paper outlines these changes and examples of new implementations, including virtual and electronically-mediated methods that also reflect ongoing changes in engineering industry practice.
Read full abstract