This paper presents a progressive fatigue damage model to predict the damage progress and the fatigue life of composite laminates under cyclic loading. First, the maximum stress criterion was applied in the fiber direction for fiber failure (FF), and Puck’s failure criteria were employed in the matrix direction in which the fracture plane is defined to determine the inter-fiber fracture (IFF). Next, material degradation rules consisting of strength and stiffness degradation were derived, and different degradation rules according to the presence of failure and failure mode were utilized for each material. The proposed model was implemented into the UMAT subroutine of ABAQUS for the finite element (FE) analysis with tension–tension cyclic loading. Finally, the progressive fatigue damage model was validated with flat-bar specimens with various lay-ups ([0]8, [90]8, [30]16, [02/902]s, [0/902]s, [0/904]s) and compared with the experimental data of static and fatigue tests. The fatigue life prediction was also conducted on the pin-loaded quasi-isotropic (QI) laminates. The simulation results showed a good agreement with the experimental data and the ability to capture the damage progress of composite laminates during their lifetime.
Read full abstract