Abstract

As a critical content of condition-based maintenance (CBM) for mechanical systems, remaining useful life (RUL) prediction of rolling bearing attracts extensive attention to this day. Through mining the bearing degradation rule from operating data, the deep learning method is often used to perform RUL prediction. However, due to the complexity of operating data, it is usually difficult to establish a satisfactory deep learning model for accurate RUL prediction. Thus, a novel convolutional neural network (CNN) prediction method based on similarity feature fusion is proposed. In this paper, the similarity features are extracted based on the correlation between statistical features and time series. After sensitive feature screening, eligible features are applied to develop a health indicator (HI), which can be used to define the bearing failure stages and reduces the complexity of the CNN model. Subsequently, a one-dimensional CNN is established to predict the RUL of bearing, and the HI is utilized to train the prediction model. The proposed approach is verified by FEMTO bearing datasets and IMS bearing datasets. And the experimental results reveal the superiority and effectiveness of the feature fusion-based CNN method in constructing HI and accurate RUL prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.