Abstract
An automated remaining useful life (RUL) prediction technique based on a deep learning network is proposed in this study for an end-to-end RUL prediction of rolling element bearings. The technique utilizes a Convolutional Neural Network (CNN) to learn the spatial features from the bearing condition monitoring data, and then employs a stack of Bidirectional Gate Recurrent Units (BGRU) to extract the temporal degrading trend from the data for a more accurate RUL prediction. A weighted average method is employed to smooth out the trend of the RUL prediction. The effectiveness of the proposed technique is validated using two bearing degradation datasets, and the advantage of the proposed technique is examined by comparing the predicted RUL with those predicted using other commonly employed deep learning techniques. It is shown that the proposed technique can yield a much more accurate result for the bearing RUL prediction than other commonly employed deep learning techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.