Thermal-barrier coatings are finding increasing use in engineering applications, particularly in gas turbines. Such coatings, consisting of ceramic insulating layers bonded to the superalloy substrate by oxidation-resistant alloy coatings, are deposited onto components to reduce heat flow through the cooled substrate and to limit operating temperature. They have been used effectively on static components such as combustor cans, flare heads, hot gas seal segments, fuel evaporators, and deflector plates, giving considerable improvements in component life. They have been used successfully on vane platforms. In recent years, the emphasis has shifted toward the development of coatings for high-risk areas, such as turbine blades.A ceramic thermal-barrier coating needs to be refractory and chemically inert, and to have low thermal conductivity. However, it also needs to possess a high thermal expansion coefficient of ~11 × 10−6 K−1, to match the nickel-base superalloy substrate. The latter specification has focused attention on ZrO2. However, ZrO2 is polymorphic and undergoes two phase changes, cubic to tetragonal at 2350°C and tetragonal to monoclinic at 1170°C. The latter transformation is accompanied by a 5% volume increase which means that ZrO2 has to be alloyed to stabilize one of the high-temperature phases. Early systems in the 1970s consisted of ZrO2 stabilized with MgO, but this has been shown to be a metastable system. Present-day commercial thermal-barrier coatings consist of a plasma-sprayed yttria- or magnesiastabilized zirconia layer on top of an M-Cr-Al-Y bond coat. The latter plays a very important role by helping to key the ceramic to the alloy substrate and to accommodate the mechanical strains arising because of differences in thermal expansion coefficients and elastic moduli between the ceramic and the substrate.
Read full abstract