Abstract

Degradation of free-standing yttria-stabilized zirconia (YSZ) and CoNiCrAlY coatings (300 μm) due to V2O5 and a laboratory-synthesized CMAS was investigated at temperatures up to 1400 °C. Reactions, phase transformations, and microstructural development in coatings were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The molten deposits destabilized the YSZ and reacted with the thermally grown oxide with various phase transformations and reaction product formation. A dense, continuous environmental barrier overlay, based on oxides, applied by electrophoretic deposition was effective in mitigating the molten deposit attack. Enriching CMAS composition with Al promoted the crystallization of anorthite platelets and MgAl2O4 spinel, and mitigated CMAS ingression. EPD MgO overlay was also effective in protection against V2O5 melt by formation of magnesium vanadates. EPD alumina overlay deposited on thermal barrier coatings with APS 8YSZ and bond-coated IN939 superalloy retained its adhesion and structural integrity after prolonged furnace thermal cycle test at 1100 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.