Recent research focuses on fabricating scaffolds imitating the extracellular matrix (ECM) in texture, composition, and functionality. Moreover, specific nano-bio-particles can enhance cell differentiation. Decellularized ECM nanoparticles possess all of the mentioned properties. In this research, cartilage ECM, extracted from the cow's femur condyle, was decellularized, and ECM nanoparticles were synthesized. Finally, nanocomposite electrospun fibers containing polyhydroxybutyrate (PHB), chitosan (Cs) nanoparticles, and ECM nanoparticles were fabricated and characterized. TEM and DLS results revealed ECM nanoparticle sizes of 17.51 and 21.6 nm, respectively. Optimal performance was observed in the scaffold with 0.75 wt% ECM nanoparticles (PHB-Cs/0.75E). By adding 0.75 wt% ECM, the ultimate tensile strength and elongation at break increased by about 29 % and 21 %, respectively, while the water contact angle and crystallinity decreased by about 36° and 2 %, respectively. Uneven and rougher surfaces of the PHB-Cs/0.75E were determined by FESEM and AFM images, respectively. TEM images verified the uniform dispersion of nanoparticles within the fibers. After 70 days of degradation in PBS, the PHB-Cs/0.75E and PHB-Cs scaffolds demonstrated insignificant weight loss differences. Eventually, enhanced viability, attachment, and proliferation of the human costal chondrocytes on the PHB-Cs/0.75E scaffold, concluded from MTT, SEM, and DAPI staining, confirmed its potential for cartilage tissue engineering.
Read full abstract