Abstract

Materials and fabrication methods significantly influence the scaffold's final features in tissue engineering. This study aimed to blend zein with polyhydroxybutyrate (PHB) at 5, 10, and 15 wt%, fabricate scaffolds using electrospinning, and then characterize them. SEM and mechanical analyses identified the scaffold with 10 wt% zein (PHB-10Z) as the optimal sample. Incorporating 10 wt% zein reduced fiber diameter from 894 ± 122 to 531 ± 42 nm while increasing ultimate tensile strength and elongation at break by approximately 53 % and 70 %, respectively. FTIR proved zein's presence in the scaffolds and possible hydrogen bonding with PHB. TGA confirmed the miscibility of polymers. DSC and XRD analyses indicated lower crystallinity for the PHB-10Z than for PHB. AFM evaluation indicated a rougher surface for the PHB-10Z in comparison to PHB. The PHB-10Z demonstrated a more hydrophobic surface and less weight loss after 100 days of degradation in PBS than PHB. The free radical scavenging assay exhibited antioxidant activity for the zein-containing scaffold. Eventually, enhanced cell attachment, viability, and differentiation in the PHB-10Z scaffold drawn from SEM, MTT, ALP activity, and Alizarin red staining of MG-63 cells confirmed that PHB-zein electrospun scaffold is a potent candidate for bone tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.