Abstract

Ferric citrate liposome (FAC-Lip) with good sustained-released property was prepared by the rotary-evaporated film-ultrasonic method, and characterized by TEM, DLS, zeta potential and encapsulation efficiency (EE%). The effects of membrane material ratios (mPC: mchol = 8:1, 10:1 and 12:1) and drug lipid ratios (mFAC: mPC = 1:4, 1:6.5 and 1:8) on the release of FAC-Lip were examined. The in vitro release kinetic models and mechanisms of FAC-Lip in artificial gastric juice (SGF) and artificial intestinal juice (SIF) compared with free-FAC were determined. The thermal degradation in PBS was also determined. The results showed that FAC-Lip with membrane material ratio (10:1) and drug lipid ratio (1:6.5) had the optimal sustained-released property, unilamellar vesicles with uniform size (178 ± 2.12 nm), negative charge (−56 ± 3.51 mV) and high encapsulation efficiency (72.77 ± 0.42%). The in vitro release kinetic models of FAC-Lip were two-phase kinetics model and the release mechanisms were non-Fick diffusion both in SGF and SIF. The thermal degradation of FAC-Lip was an endothermic and spontaneous reaction. The results may be helpful in optimizing drug-liposome design, application in food and medicine industries, and furthermore, predicting and guiding medication in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call