The strength of a square plate with a central crack at normal separation was studied within the framework of the Neuber–Novozhilov approach using a modified Leonov–Panasyuk–Dugdale model using an additional parameter, the diameter of the plasticity zone (width of the pre-fracture zone). As a model of a deformable solid body, a model of an ideal elastic-plastic material with a limiting relative elongation was chosen. This class of materials includes, for example, low-alloy steels used in structures operating at temperatures below the cold brittleness threshold. In the presence of a singular feature in the stress field in the vicinity of the crack tip, it is proposed to use a two-parameter discrete integral strength criterion. The deformation fracture criterion is formulated at the tip of a real crack, and the force criterion for normal stresses, taking into account averaging, is formulated at the tip of a model crack. The lengths of real and model cracks differ by the length of the pre-fracture zone. The constitutive equations of the analytical model are analyzed in detail depending on the characteristic linear dimension of the material structure. Simple formulas suitable for verification calculations for the critical breaking load and the length of the pre-fracture zone are obtained. Numerical modeling of the propagation of plasticity zones in square plates under quasi-static loading has been performed. In the numerical model, the updated Lagrangian formulation of the equations of mechanics of a deformable solid body is used, which is most preferable for modeling the deformation of bodies made of an elastic-plastic material at large deformation. The plastic zone in the vicinity of the crack tip is obtained by the finite element method. The results of analytical and numerical prediction of plate fracture under plane deformation are compared. It is shown that the results of numerical experiments are in good agreement with the results of calculations using the analytical model of fracture of materials with a structure under normal separation. Diagrams of quasi-brittle and quasi-ductile fracture of a structured plate are constructed.