Abstract

In this paper, a micromechanical model was developed to predict the residual stress–strain state that is generated around nodules of a ferritic ductile cast iron during solidification. A finite element analysis was performed on a reference volume element of the material to analyze the local strain development, having modeled both matrix and nodule as deformable bodies in contact. The behavior of the nodule was assumed linear–elastic because of the low stresses to which it is subjected during cooling. On the other hand, elasto-plastic viscous behavior was considered for the matrix, considering both the primary and secondary creep regimes. To make up for the lack of information on the physical–thermomechanical properties of the constituents, the available literature data were integrated with the results obtained from the CALPHAD methodology applied to both cast iron and the steel that constitutes its matrix. The micromechanical model was validated by comparing the resulting residual strains with experimental data available in the literature for a ferritic ductile cast iron. Then, it was used for analyzing the correlation between the solidification history and the mechanical response of cast iron in terms of the uniaxial stress–strain curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call