The virtual electrode (VE) has been recognized as an important factor for success or failure of cardiac defibrillation. Many researches have been performed to study characteristics of the VE. However, there are some questions which remain unanswered. In this study, we developed a simulator to solve a three-dimensional bidomain model and performed several simulations to elucidate the basic characteristics of VE in a simplified cardiac tissue with passive membrane when a constant unipolar cathodal stimulus was applied. The results showed that for smaller electrodes, VE has a typical dog-bone shaped virtual cathode (VC) and two egg-shaped virtual anodes (VAs). The distributions both in intra- and extracellular potentials have concentric ellipsoidal isosurfaces, but their ellipticities are subtly different, producing VE. For larger electrodes, VC becomes larger and has a flat-dish shape rather than dog-bone, and VA becomes smaller and also flattens and collapses. The peak values of VE are larger for smaller electrodes, but their time courses show similar tendency among the different sized electrodes. The change of stimulus strength and polarity only affects the magnitude of VE in a linear manner and the distribution pattern is unchanged. These results provide us fundamental knowledge about VE.
Read full abstract