Isoprene, a lipophilic and unstable compound with the chemical formula C5H8, is transported to plant chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, which relies on photosynthesis. Although only about 20% of terrestrial plants can synthesize isoprene, those that emit it are more adaptable to oxidative and thermal stresses. To shed light on the still-elusive protective mechanism of isoprene, numerous investigations have been conducted. Isoprene has been shown to react with and quench various reactive oxygen species (ROS) such as singlet oxygen (1O2). Its reduced state and conjugated double bonds suggest that it functions as an antioxidant, although this has yet to be conclusively proven. Despite its low abundance relative to other molecules in plant tissues, recent research has explored several potential roles for isoprene including acting as a scavenger of ROS by serving as an antioxidant; strengthening cell membranes; modulating genomic, proteomic and metabolomic profiles; signaling stress responses among neighboring plants compared with other volatile organic compounds (VOCs); regulating metabolic fluxes of hormones produced through the MEP pathway; or even functioning as a free developmental hormone. Future prospective studies, such as identifying the specific receptors for VOCs along with transcription factors (TFs) and other regulatory proteins participating in the signaling pathways and also metabolomic, transcriptomic and physiological analyses could help in comprehending VOC-induced defense responses in plants under stress conditions.