Abstract

Our previous research showed that a powdery mildew resistant barley line (MvHV07-17) maintains its resistance to Blumeria hordei (Bh) even if plants are exposed to a long-term high temperature of 35°C for 120 h before Bh inoculation, whereas such high temperature pretreatment further increases susceptibility to infection in the susceptible barley line MvHV118-17. In the present study, we extended this approach using short-term high-temperature water treatment (49°C for 30 s) to determine how it affects powdery mildew resistance in these barley lines. We found that this short-term heat shock (HS) impaired plant defense responses, as reflected by development of Bh colonies and visible necrotic spots on leaves of MvHV07-17, which does not develop visible symptoms upon Bh inoculation under optimal growth conditions. In contrast, both HS and long-term heat stress enhanced susceptibility to Bh in MvHV118-17 plants. These results were supported by the measurement of Bh biomass using a qPCR method. Furthermore, microscopic examinations showed that HS elevated the rate of successful Bh penetration events and the spread of cell death in the surrounding mesophyll area and allowed for colony formation and sporulation in resistant barley, whereas early and effective plant defense responses, such as papilla formation and single-cell epidermal hypersensitive response, were significantly reduced. Furthermore, we found that the accumulation of hydrogen peroxide in both resistant and susceptible barley was correlated with susceptibility induced by HS and long-term heat-stress. This study may contribute to a better understanding of plant defense responses to Bh in barley exposed to heat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.