Trajectory-User Linking (TUL) aims to link anonymous trajectories to their owners, which is considered an essential task in discovering human mobility patterns. Although existing TUL studies have shown promising results, they still have specific defects in the perception of spatio-temporal properties of trajectories, which manifested in the following three problems: missing context of the original trajectory, ignorance of spatial information, and high computational complexity. To address those issues, we revisit the characteristics of the trajectory and propose a novel model called TULMGAT (TUL via Multi-Scale Graph Attention Network) based on masked self-attention graph neural networks. Specifically, TULMGAT consists of four components: construction of check-in oriented graphs, node embedding, trajectory embedding, and trajectory user linking. Sufficient experiments on two publicly available datasets have shown that TULMGAT is the state-of-the-art model in task TUL compared to the baselines with an improvement of about 8% in accuracy and only a quarter of the fastest baseline in runtime. Furthermore, model validity experiments have verified the role of each module.
Read full abstract