Abstract

Magnetic flux leakage (MFL) inspection employs leakage magnetic fields to effectively detect and locate pipeline defects. The spacing between magnetic poles significantly affects the leakage magnetic field strength. While most detectors typically opt for moderate pole spacing for routine detection, this study investigates the propagation characteristics of MFL signals at small pole spacings (under specimen oversaturated magnetization) and their impact on MFL detection. Through finite element simulation and experiments, it reveals a new signal phenomenon in the radial MFL signal By at small pole spacings, the double peak-valley (DPV) phenomenon, characterized by outer and inner peaks and valleys. Theoretical analysis based on the simulation results elucidates the mechanisms for this DPV phenomenon. Based on this, the impact of defect size, pipe wall thickness, and magnetic pole and rigid brush height on MFL signals under small magnetic pole spacings is examined. It is demonstrated that, under a smaller magnetic pole spacing, a potent background magnetic field manifests in the air above the defect. This DPV phenomenon is generated by the magnetic diffusion and compression interactions between the background and defect leakage magnetic fields. Notably, the intensity of the background magnetic field can be mitigated by reducing the height of the rigid brush. In contrast, the pipe wall thickness and magnetic pole height exhibit a negligible influence on the DPV phenomenon. The emergence of the DPV precipitates a reduction in the peak-to-valley difference within the MFL signal, constricting the depth range of detectable defects. However, the presence of DPV increases the identification of defects with smaller opening sizes. These findings reveal the characterization of the MFL signal under small pole spacing, offering a preliminary study on identifying specific defects using unconventional signals. This study provides valuable guidance for MFL detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.