We deform a defect conformal field theory by an exactly marginal bulk operator and we consider the dependence on the marginal coupling of flat and spherical defect expectation values. For even dimensional spherical defects we find a logarithmic divergence which can be related to a $a$-type defect anomaly coefficient. This coefficient, for defect theories, is not invariant on the conformal manifold and its dependence on the coupling is controlled to all orders by the one-point function of the associated exactly marginal operator. For odd-dimensional defects, the flat and spherical case exhibit different qualitative behaviors, generalizing to arbitrary dimensions the line-circle anomaly of superconformal Wilson loops. Our results also imply a non-trivial coupling dependence for the recently proposed defect $C$-function. We finally apply our general result to a few specific examples, including superconformal Wilson loops and R\'enyi entropy.
Read full abstract