Abstract
We study entanglement entropy (EE) in conformal field theories (CFTs) in Minkowski space with a planar boundary or with a planar defect of any codimension. In any such boundary CFT (BCFT) or defect CFT (DCFT), we consider the reduced density matrix and associated EE obtained by tracing over the degrees of freedom outside of a (hemi-)sphere centered on the boundary or defect. Following Casini, Huerta, and Myers, we map the reduced density matrix to a thermal density matrix of the same theory on hyperbolic space. The EE maps to the thermal entropy of the theory on hyperbolic space. For BCFTs and DCFTs dual holographically to Einstein gravity theories, the thermal entropy is equivalent to the Bekenstein-Hawking entropy of a hyperbolic black brane. We show that the horizon of the hyperbolic black brane coincides with the minimal area surface used in Ryu and Takayanagi's conjecture for the holographic calculation of EE. We thus prove their conjecture in these cases. We use our results to compute the R\'enyi entropies and EE in DCFTs in which the defect corresponds to a probe brane in a holographic dual.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have