The atrazine (ATR) is extensively used in dryland crops like corn and sorghum in black soil region of Northeast China, posing ecological risks due to toxic metabolites. Vermicompost are known for soil organic pollution remediation but their role in pesticide degradation in black soil remains understudied. The influence of vermicompost on the microbial degradation pathway of atrazine was assessed in this study. Although vermicompost didn't significantly boost atrazine removal, they notably aided in primary metabolite degradation, hydroxyatrazine (HYA), deisopropylatrazine (DIA), and deethylatrazine (DEA), reducing their content by 38.67 %. They also altered the soil microbial community structure, favoring atrazine-degrading bacteria like Proteobacteria, Firmicutes, and Actinobacteria. Five secondary degradation products were identified in vermicompost treatments. Atrazine degradation occurred via dechlorination, dealkylation, and deamination pathways mainly by Nocardioidacea, Streptomycetaceae, Bacillaceae, Sphingomonadaceae, Comamonadaceae and Nitrososphaeraceae. pH and available nitrogen (AN) influenced microbial community structure and atrazine degradation, correlating with vermicompost application rates. Future black soil remediation should optimize application rates based on atrazine content and soil properties.
Read full abstract