Abstract
To understand the influence of Cd on atrazine (ATZ) degradation in aqueous solution, the degradation of different initial levels of ATZ (0.1, 0.5, 1.0, and 2.0mg·L-1) was investigated in the presence and absence of Cd2+ in a 20-day laboratory experiment. It was found that Cd2+ caused a significant decrease in ATZ degradation and increased its half-life from 17-34days to 30-57days (p < 0.0001). Regarding the three most common metabolites of ATZ, deethylatrazine (DEA) and deisopropylatrazine (DIA) were detected in water earlier than hydroxyatrazine (HYA). The DEA content was several times higher than the DIA and HYA contents, regardless of the presence or absence of Cd2+. In the presence of Cd2+, the DIA content was significantly lower and the HYA content was significantly higher. Furthermore, Cd2+ had a dose-dependent effect on HYA formation. Our results indicated that the coexistence of Cd2+ and ATZ resulted in greater herbicide persistence, thereby possibly increasing the risk of environmental contamination. DEA was still the predominant ATZ degradation product detected in water under the combined pollution, which was similar to the ATZ tendency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have