Wildlife monitoring in tropical rainforests poses additional challenges due to species often being elusive, cryptic, faintly colored, and preferring concealable, or difficult to access habitats. Unmanned aerial vehicles (UAVs) prove promising for wildlife surveys in different ecosystems in tropical forests and can be crucial in conserving inaccessible biodiverse areas and their associated species. Traditional surveys that involve infiltrating animal habitats could adversely affect the habits and behavior of elusive and cryptic species in response to human presence. Moreover, collecting data through traditional surveys to simultaneously estimate the abundance and demographic rates of communities of species is often prohibitively time-intensive and expensive. This study assesses the scope of drones to non-invasively access the Bukit Tigapuluh Landscape (BTL) in Riau-Jambi, Indonesia, and detect individual elephants of interest. A rotary-wing quadcopter with a vision-based sensor was tested to estimate the elephant population size and age structure. We developed hierarchical modeling and deep learning CNN to estimate elephant abundance and age structure. Drones successfully observed 96 distinct individuals at 8 locations out of 11 sampling areas. We obtained an estimate of the elephant population of 151 individuals (95% CI [124, 179]) within the study area and predicted more adult animals than subadults and juvenile individuals in the population. Our calculations may serve as a vital spark for innovation for future UAV survey designs in large areas with complex topographies while reducing operational effort.