Abstract
Human Activity Recognition recognizes and classifies the activities performed by the users or people based on the data collected from the sensors of special devices such as smart-watches, smartphones etc. It has become easy to collect a huge amount of data from inertial sensors that are embedded in wearable devices. An accelerometer and gyroscope sensors are most commonly used inertial sensors. There are various already available datasets, in our paper, we are using the Wireless Sensor Data Mining dataset which contains 1,098,207 data of 6 physical activities performed. In this paper, the activities we aim to classify are walking, jogging, going up and downstairs, standing, and sitting. There are various algorithms applied on the various datasets. In our paper, we use Convolutional Neural Network and Long Short-Term Memory deep learning algorithm on the data set, we split the data into training data [80%] and testing data [20%]. By using a confusion matrix, we recognize and classify the activities performed using maximum accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.