The 8# coal seam in the Benxi Formation of the southeastern margin of the Ordos Basin is a deep coal seam with abundant coalbed methane resources. Calcite veins are commonly developed within the 8# coal seam, and their formation processes and mechanisms have significant implications for the enrichment of deep coalbed methane. Genesis of the calcite veins was analyzed to reveal the impact of the calcite veins formation on coalbed methane accumulation, with an integrated application of petrographic study by thin section, cathodoluminescence analysis, carbon-oxygen isotope analysis, and homogeneous temperature measurements of fluid inclusions. The research findings indicate that the calcite veins in the 8# coal seam can be classified into three stages: C1, C2, and C3. The diagenetic fluids of C1 primarily originated from contemporaneous seawater. The fluids responsible for the formation of C2 primarily consist of organic fluids enriched in biogenic gas, whereas the fluids contributing to the formation of C3 are primarily associated with liquid hydrocarbons originated form decarboxylation of organic matter. Furthermore, the development of both C2 and C3 is influenced by deep hydrothermal fluids resulting from tectonic heating events during the Early Cretaceous. By combining analysis of the hydrocarbon accumulation history and burial history in the study area, it has been established that C2 formation occurred during the Late Triassic to Early Jurassic, while C3 formation took place during the Late Jurassic to Early Cretaceous. The exploration and production practices in the study area have firmly established the crucial significance of the formation and evolution of calcite veins within the 8# coal seam for the migration and accumulation of coalbed methane. The research outcomes provide valuable insights for the exploration of deep coalbed methane enrichment areas.