Lupeol is a natural pentacyclic triterpenoid with a wide range of biological activities. To improve the water solubility and targeting of lupeol, in the following study, we synthesized 27 lupeol derivatives in the first series by introducing lipophilic cations with lupeol as the lead compound. Through the screening of different cancer cells, we found that some of the derivatives showed better activity than cisplatin against human non-small cell lung cancer A549 cells, among which compound 6c was found to have an IC50 value of 1.83 μM and a selectivity index of 21.02 (IC50MRC-5/IC50A549) against A549 cells. To further improve the antiproliferative activity of the compounds, we replaced the ester linkage of the linker with a carbamate linkage and synthesized a second series of five lupeol derivatives which were screened for activity, among which compound 14f was found to have an IC50 value of 1.36 μM and a selectivity index of 15.60 (IC50MRC-5/IC50A549) against A549 cells. We further evaluated the bioactivity of compounds 6c and 14f and found that both compounds induced apoptosis in A549 cells, promoted an increase in intracellular reactive oxygen species and decrease in mitochondrial membrane potential, and inhibited the cell cycle in the S phase. Of the compounds, compound 14f showed stronger bioactivity than compound 6c. We then selected compound 14f for molecular-level Western blot evaluation and in vivo evaluation in the zebrafish xenograft A549 tumor cell model. Compound 14f was found to significantly downregulate Bcl-2 protein expression and upregulate Bax, Cyt C, cleaved caspase-9, and cleaved caspase-3 protein expression, and 14f was found to be able to inhibit the proliferation of A549 cells in the zebrafish xenograft model. The above results suggest that compound 14f has great potential in the development of antitumor drugs targeting mitochondria.