Glucocorticoid excess adversely affects male reproduction. This study evaluates effects of pharmacological doses of niacin on testicular structure and function in dexamethasone-treated rats. Adult rats (48) were randomly assigned to 6 equal groups: (1) Negative control (NC): normal rats; (2) Positive control (PC): dexamethasone at 7 mg/kg/day by intraperitoneal injections for 7 days; groups 3-6 (N50, N100, N200, and N400): dexamethasone and concomitant treatment with niacin at 50, 100, 200, and 400 mg/kg/day by oral gavages. Testicular weight and volume of PC rats were significantly lower than the NC group (p < .05). Testicular volume of rats in the N50 and N200 groups was statistically similar to the NC group. Significant decreases in serum testosterone with a slight LH increase were detected in the PC group. Nacin at 50 mg/kg reversed serum testosterone to NC levels and increased serum LH concentration. Niacin only slightly increased epididymal spermatozoa number while all groups of niacin-treated rats had significantly higher percentages of motile spermatozoa compared with the PC group. Hypospermatogenesis, germ cell degeneration and depletion, epithelial vacuolization, and degenerated Leydig cells were observed in PC rats. Lesions were relatively milder in niacin-treated rats. Johnsen scores were also significantly higher in niacin-treated rats. Niacin reduced apoptosis as shown by TUNEL assay. In conclusion, niacin administration at pharmacological doses dose-dependently ameliorates the destructive effects of dexamethasone on sperm motility, Johnsen score, and testicular cell apoptosis in rats with the latter can be considered a decisive mechanism for its positive effects on testis.