The whole-genome sequencing data of three N. gonorrhoeae strains isolated in the Russian Federation in 2015 are presented. According to the NG-MAST protocol, these strains are related to the globally spread ST 1407 genogroup. The analysis of their resistomes showed the absence of ermA/B/C/F genes and the presence of wild-type alleles of rpsE, rrs, rrl, rplD, rplV, macAB, and mefA genes, and these patterns explain the susceptibility of the sequenced strains to aminocyclitols (spectinomycin) and macrolides (azithromycin). Conjugative resistance determinants (blaTEM, tetM) were absent in the genomes, and the penC/ pilQ, parE, and norM alleles were shown to be wild-type, whereas single or multiple nucleotide substitutions were identified in the genes encoding targets for -lactams (ponA, penA), tetracyclines (rpsJ), and fluoroquinolones (gyrA, parC). The additional mutations were found in porB gene and the promoter of mtrR gene, which nonspecifically reduced the susceptibility to antimicrobials due to the membrane permeability decrease and efflux pump overexpression. The diversity of mutations observed in the analyzed genomes prompted a revision of the phylogenetic relationships between the strains by comparing more than 790 groups of housekeeping genes. A high homology between the N. gonorrhoeae ST 1407 and N. gonorrhoeae ST 12556 genomes was confirmed; the latter had probably diverged from a common ancestor as a result of single mutation events. On the other hand, N. gonorrhoeae ST 12450 was an example of phenotypic convergence which appeared in the emergence of new drug resistance determinants that partially coincide with those of the ST 1407 genogroup.
Read full abstract