Abstract

Membrane biofouling remains a major limiting factor for the membrane-based water purification technology. The development of antibacterial membrane surfaces is very important for membrane biofouling mitigation. In this study, we developed a one-pot method of synthesizing silver nanoparticles (Ag NPs) and immobilizing them onto membranes via simply soaking the membranes in a mixture solution of silver nitrate, poly (ethylene glycol) methyl ether thiol (mPEG-SH) and dopamine. Results illustrate that mPEG-SH works as a ligand to slow down the reduction process of silver ions by dopamine for the synthesis of Ag NPs in a controllable manner and also the prevention of Ag NPs aggregation in solution. Moreover, the Ag NPs could be in situ immobilized onto polysulfone ultrafiltration membrane, glass fiber membrane and stainless steel, regardless of their surface properties, but the size of Ag NPs was affected by the substrates. In addition, the Ag NPs immobilization on the polysulfone ultrafiltration membranes increased the bovine serum albumin rejection rate of membrane by 16%, but decreased membrane permeability by 14% compared to that of the pristine membranes. The Ag NPs containing membranes exhibited outstanding antibacterial properties with more than 90% antibacterial efficiency against both Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. During the filtration test, the silver release from the Ag NPs containing polysulfone ultrafiltration membranes was very slow and the total accumulation of silver ions released from the membranes was only 7% of its initial Ag NPs loading after 24 h filtration operation. The silver ion concentration in the permeate water was 0.35 ± 0.16 ppb, far below the maximal contaminant limit of silver ions in drinking water with no risk for the application of Ag NPs incorporated membranes to treat water. Our work provides a facile and universal approach of synthetizing and simultaneously immobilizing Ag NPs onto diverse membranes for antibacterial properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call