We study the problem of how to derive conformal symmetry in the framework of quantum gravity. We start with a generic gravitational theory which is invariant under both the general coordinate transformation (GCT) and Weyl transformation (or equivalently, local scale transformation), and then construct its BRST formalism by fixing the gauge symmetries by the extended de Donder gauge and scalar gauge conditions. These gauge-fixing conditions are invariant under global GL(4) and global scale transformations. The gauge-fixed and BRST invariant quantum action possesses a huge PoincarĂ©-like IOSp(10|10) global symmetry, from which we can construct an extended conformal symmetry in a flat Minkowski background in the sense that the Lorentz symmetry is replaced with the GL(4) symmetry. Moreover, we construct the conventional conformal symmetry out of this extended symmetry. With a flat Minkowski background âšgΌΜâ©=ηΌΜ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle g_{\\mu \ u } \\rangle = \\eta _{\\mu \ u }$$\\end{document} and a non-zero scalar field âšÏâ©â 0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle \\phi \\rangle \ e 0$$\\end{document}, the GL(4) and global scale symmetries are spontaneously broken to the Lorentz symmetry, thereby proving that the graviton and the dilaton are respectively the corresponding NambuâGoldstone bosons, and therefore they must be exactly massless at nonperturbative level. One of remarkable aspects in our findings is that in quantum gravity, a derivation of conformal symmetry does not depend on a classical action, and its generators are built from only the gauge-fixing and the FP ghost actions. Finally, we address a generalized Zumino theorem in quantum gravity.