Abstract

Applying the quantum field theoretic perturbiner approach to Einstein gravity, we compute the metric of a Schwarzschild black hole order by order in perturbation theory. Using recursion, this calculation can be carried out in de Donder gauge to all orders in Newton's constant. The result is a geometric series which is convergent outside a disk of finite radius, and it agrees within its region of convergence with the known de Donder gauge metric of a Schwarzschild black hole. It thus provides a first all-order perturbative computation in Einstein gravity with a matter source, and this series converges to the known nonperturbative expression in the expected range of convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call