AbstractThe authors focus on the impact of melt‐free radical grafting with hindered phenolic antioxidants (AO3052) on the electrical properties of polypropylene (PP) for DC cable insulation. The DC conductivity, space charge distribution and breakdown characteristic tests of grafting‐modified PP are performed by comparing unmodified PP. The results demonstrate that the grafting of antioxidants can effectively suppress space charge injection, owing to the deeper trap sites at the grafting molecule. The breakdown strength of the grafted PP is significantly enhanced from 30°C to 90°C and especially achieves a 5.3%–6.7% increase after the same DC‐prestressed time at 90°C. The surface electrostatic potential and molecular orbitals of the grafted PP are calculated. Simulation shows that the antioxidant introduces multi‐level local state traps that can effectively trap the injected space charge, thus decreasing the destruction of molecular chains by electrons and increasing the breakdown strength level. In conclusion, antioxidant grafting modification can improve the breakdown characteristics with or without DC prestress, and thus it appears to be promising in the application of PP‐insulated cables.
Read full abstract