Neuropathy in vertebrates can be a consequence of failure of genes involved in the nervous system to be expressed at the correct times and levels during embryonic life. Recently, a brain specific gene, Doublecortin, was cloned and was shown to have mutations in X-linked lissencephaly and double cortex syndrome. KIAA0369 is a putative kinase that is structurally related to Doublecortin. We compared the expression of KIAA0369 with that of Doublecortin, both of which were expressed specifically or predominantly in fetal brain among 20 different tissues examined. The deduced products of both genes contain a unique domain (the Doublecortin [DC] domain), but KIAA0369 also contains a calmodulin-dependent kinase (CaM kinase)-like domain following the DC domain. We found at least four splicing variants of KIAA0369: KIAA0369-AS (type A, short version), KIAA0369-AL (type A, long version), KIAA0369-BS (type B, short version), and KIAA0369-BL (type B, long version). KIAA0369-B, which lacked the DC domain and maintained the kinase domain, was expressed in adult as well as fetal brain, but the variants that included the DC domain, KIAA0369-A, were expressed predominantly in fetal brain. These results suggest that the DC domain plays an important role in the development of the nervous system. In the adult brain, KIAA0369 was expressed in all 15 different regions examined, more intensely in cerebral cortex, occipital pole, frontal lobe, amygdala, and hippocampus, and less intensely in corpus callosum and thalamus. The murine homologs of Doublecortin and KIAA0369 were not detectable in 7-day mouse embryos, but both genes were expressed extensively in 11-day embryos. Human KIAA0369 was mapped by fluorescence in situ hybridization (FISH) to chromosome 13q13-q14.1. The presence of genes related to neuropathy has been reported in this locus.
Read full abstract