The increased adoption of inverter-based distributed energy resources in the form of the mass deployment of renewable generation systems has been a focal goal of many jurisdictions worldwide. Actions taken by local governments have included adapted regulations, financial subsidies, and a variety of grants. This has spurred the proliferation of solar generation among residential customers in virtually all provinces of the United States and Canada. Needless to say, these small generators are interfaced with DC–AC inverters, which have evolved tremendously since the formation of working groups targeting the impact of inverter-based generation on the grid. Among the first rules and standards are California’s ISO Rule 21 and the UL1741 SA, which were published in September 2017. IEEE followed suit in 2018 with the revision of IEEE 1547, inspiring virtually all jurisdictions to either adopt these standards or adapt them as their own variants. Among many features, these standards mandate inverters to be fitted with autonomous performance functions, including the constant power factor, voltage-reactive power (Volt-VAR), voltage-active power (Volt-Watt), and grid support functions, as well as provisions for compatibility with control centers. These functions have been demonstrated to increase the nameplate hosting capacity. At the same time, grid modernization strategies have become more prevalent, one of which is the use of conservation voltage reduction. This grid modernization initiative has a great impact on the hosting capacity. Conversely, the increased penetration of distributed energy resources has a negative effect on the conservation voltage reduction, but surprisingly to only a limited extent. The characterization of these impacts is addressed in this paper, with a focus on a case with very high DER penetration and with very long daily sunlight hours.