This survey provides a comprehensive analysis of the systematic differences and advancements between deep learning (DL) and traditional machine learning (ML) models. By examining a wide array of research papers, the study highlights the unique strengths and applications of both methodologies. Deep learning, with its multi-layered neural networks, excels in handling large, unstructured datasets, making significant strides in image and speech recognition, natural language processing, and complex pattern recognition tasks. Conversely, traditional machine learning models, which rely on feature extraction and simpler algorithms, remain highly effective in structured data scenarios such as classification, regression, and clustering problems. The survey elucidates the criteria for choosing between DL and ML, focusing on factors like data size, computational resources, and specific application requirements. Furthermore, it discusses the evolving landscape of hybrid models that integrate DL and ML techniques to leverage the strengths of both approaches. This analysis provides valuable insights for researchers and practitioners aiming to deploy the most suitable AI models for their specific needs, emphasizing the importance of contextual understanding in the rapidly advancing field of artificial intelligence.