Abstract

When the literature regarding applications of neural networks is investigated, it appears that a substantial issue is what size the training data should be when modelling a time series through neural networks. The aim of this paper is to determine the size of training data to be used to construct a forecasting model via a multiple-breakpoint test and compare its performance with two general methods, namely, using all available data and using just two years of data. Furthermore, the importance of the selection of the final neural network model is investigated in detail. The results obtained from daily crude oil prices indicate that the data from the last structural change lead to simpler architectures of neural networks and have an advantage in reaching more accurate forecasts in terms of MAE value. In addition, the statistical tests show that there is a statistically significant interaction between data size and stopping rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.