This article proposes a unified approach to the issues of uniqueness and Lipschitz stability for the final data inverse source problems of determining the unknown spatial load F ( x ) {F(x)} in the evolution equations. The approach is based on integral identities outlined here for the one-dimensional and multidimensional heat equations ρ ( x ) u t - ( k ( x ) u x ) x = F ( x ) G ( t ) , ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] , \rho(x)u_{t}-(k(x)u_{x})_{x}=F(x)G(t),\quad(x,t)\in(0,\ell)\times(0,T], and ρ ( x ) u t - div ( k ( x ) ∇ u ) = F ( x ) G ( x , t ) , ( x , t ) ∈ Ω × ( 0 , T ] , Ω ∈ ℝ n , \rho(x)u_{t}-\operatorname{div}(k(x)\nabla u)=F(x)G(x,t),\quad(x,t)\in\Omega% \times(0,T],\,\Omega\in\mathbb{R}^{n}, for the damped wave, and the Euler–Bernoulli beam and Kirchhoff plate equations ρ ( x ) u t t + μ ( x ) u t - ( r ( x ) u x ) x = F ( x ) G ( x , t ) , ρ ( x ) u t t + μ ( x ) u t + ( r ( x ) u x x ) x x = F ( x ) G ( t ) , \rho(x)u_{tt}+\mu(x)u_{t}-(r(x)u_{x})_{x}=F(x)G(x,t),\quad\rho(x)u_{tt}+\mu(x)% u_{t}+(r(x)u_{xx})_{xx}=F(x)G(t), for ( x , t ) ∈ ( 0 , ℓ ) × ( 0 , T ] {(x,t)\in(0,\ell)\times(0,T]} , and ρ ( x ) h ( x ) u t t + μ ( x ) u t + ( D ( x ) ( u x 1 , x 1 + ν u x 2 , x 2 ) ) x 1 , x 1 + ( D ( x ) ( u x 2 , x 2 + ν u x 1 , x 1 ) ) x 2 , x 2 + 2 ( 1 - ν ) ( D ( x ) u x 1 , x 2 ) x 1 , x 2 \displaystyle\rho(x)h(x)u_{tt}+\mu(x)u_{t}+(D(x)(u_{x_{1},x_{1}}+\nu u_{x_{2},% x_{2}}))_{x_{1},x_{1}}+(D(x)(u_{x_{2},x_{2}}+\nu u_{x_{1},x_{1}}))_{x_{2},x_{2% }}+2(1-\nu)(D(x)u_{x_{1},x_{2}})_{x_{1},x_{2}} = F ( x ) G ( t ) , ( x , t ) ∈ Ω T := Ω × ( 0 , T ) , Ω := ( 0 , ℓ 1 ) × ( 0 , ℓ 2 ) , \displaystyle =F(x)G(t),\quad(x,t)\in\Omega_{T}:=\Omega\times(0,T),\,% \Omega:=(0,\ell_{1})\times(0,\ell_{2}), and allows us to prove the uniqueness and stability of the solutions for all considered inverse problems under the same conditions imposed on the load G ( t ) {G(t)} or G ( x , t ) {G(x,t)} .
Read full abstract