Abstract
We study inverse boundary problems for the magnetic Schrödinger operator with Hölder continuous magnetic potentials and continuous electric potentials on a conformally transversally anisotropic Riemannian manifold of dimension n ⩾ 3 with connected boundary. A global uniqueness result is established for magnetic fields and electric potentials from the partial Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.