Abstract
We consider a shape optimization based method for finding the best interpolation data in the compression of images with noise. The aim is to reconstruct missing regions by means of minimizing a data fitting term in an L p -norm, for 1 ⩽ p < + ∞, between original images and their reconstructed counterparts using linear diffusion PDE-based inpainting. Reformulating the problem as a constrained optimization over sets (shapes), we derive the topological asymptotic expansion of the considered shape functionals with respect to the insertion of small ball (a single pixel) using the adjoint method. Based on the achieved distributed topological shape derivatives, we propose a numerical approach to determine the optimal set and present numerical experiments showing the efficiency of our method. Numerical computations are presented that confirm the usefulness of our theoretical findings for PDE-based image compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.