Pomegranate (Punica granatum) is an important fruit crop for therapeutic and food applications. In June 2022, brown spots were observed on the fruit surface of pomegranate cultivar named Guangyan in Mengzi (23°20'6''N,103°25'5''E), Yunnan, China. The early spots appeared as circular or irregular lesions, measuring 1~1.5 mm in diameter. They were light brown with a clear boundary between disease and healthy tissues. Over time, these spots developed into polygonal lesions covering the entire fruit surface. Eventually, the diseased fruits decayed, and more than 50% of fruits were infected in pomegranate orchards. The tissues from the interface between health and disease were cut down, immersed in 75% ethanol for 15 s, then 5% NaOCl disinfecting for 2 min, washed three times with sterile water, and the PDA cultured at 26 °C in an incubator under dark conditions. Twenty-five samples were collected for pathogen isolation, ten fungal isolates were obtained by single spore germination, and these isolates had similar morphological characters. The colonies were white with 81 mm diameter at 7 days of incubation, containing undulate edges with dense aerial mycelium. After 14 days, the black conidiomata formed superficially, gathering into black droplets. Conidiogenous cells were hyaline, short, and filiform. Conidia were fusiform, straight or slightly curved, and comprised five cells, 24.12 to 34.53 (x̄=29.78) μm × 4.21 to 12.15 (x̄=8.68) μm (n=50). The three median cells were 13.13 to 25.22 μm (x̄=18.54), dark brown, whose septa and periclinal walls were darker than the other two cells. The apical cells showed two to four appendages, 12.31 to 29.15 (x̄=21.56) μm. Only a single appendage was found on the basal cell, 2.34 to 7.16 μm. Based on morphological features, these isolates were identified as Neopestalotiopsis clavispora (Maharachchikumbura et al., 2012, 2014). Molecular identification of isolate YNSL-3 was performed by amplification and sequencing of ITS4/ITS5, BT2A/ BT2B and EF1-728F/EF-2, respectively (White et al. 1990, Glass et al.1995, Carbone et al. 1999, O'Donnell et al. 1998). These base sequences were deposited in GenBank with accession numbers OQ891378 (ITS), OR088917 (Tef) and OR513439(Tub), respectively. BLAST searches of the sequences revealed 100% (478/478 bp), 100% (484/484 bp), and 94.67% (426/450 bp) homology with those of N. clavispora NM16311a from GenBank (LC209216, LC209220, and LC209221), respectively. Phylogenetic analysis (IQ-TREE) by maximum likelihood method showed that the isolate YNSL-3 was clustered with N. clavispora. The pathogenicity was tested with the isolate of YNSL-3, YNSL-5 and YNSL-8 by detached assay. The fruit surface of pomegranate cultivar Guangyan was wounded with a sterilized needle. The mycelial blocks (5mm2) of isolates cultured on PDA for 7 days were attached to the points of inoculation. Controls were inoculated with sterile PDA agar. All inoculated fruits were maintained in a growth chamber at 26°C with 75% relative humidity. The test was performed thrice. The brown lesions were observed after 7 days, whereas the controls showed no symptoms. The same pathogens reisolated were identical to the original isolates based on morphological characterization and molecular analyses. N. clavispora could cause different diseases in many plants (Rajashekara et al. 2023, Loredana et al. 2020). To our knowledge, this is the first report of fruit brown spot on Punica granatum caused by N. clavispora in China. This finding will help improve management strategies against the fruit brown spots on P. granatum in China.