A. Colaa,∗, B. Nabet, Xiying Chen and F. Quaranta CNR-IMM sez. di Lecce, via Arnesano 73100 Lecce, Italy Electrical and Computer Engineering Dept., Drexel University 318 Commonwealth, Philadelphia, PA, 19104, USA In this work we review the properties of a class of metal−semiconductor– metal photodetectors based on heterojunction structures. Particularly, an AlGaAs/GaAs device is detailed in which the absorption region is in the GaAs layer, and a two-dimensional electron gas is formed at the heterointerface due to δ-doping of the widegap material. This heterostructure metal– semiconductor–metal photodetector also contains an AlGaAs distributed Bragg reflector that forms a resonant cavity for detection at 850 nm. The beneficial effect of the two-dimensional electron gas in the GaAs absorption layer in terms of speed and sensitivity is demonstrated by comparing samples with and without doping in the AlGaAs layer. The design and the physical properties of the grown epitaxial structure are presented, together with the static and dynamic characteristics of the device in time domain. In particular, photocurrent spectra exhibit a 30 nm wide peak at 850 nm, and time response measurements give a bandwidth over 30 GHz. A combination of very low dark current and capacitance, fast response, wavelength selectivity, and compatibility with high electron mobility transistors makes this device suitable for a number of application areas, such as Gigabit and 10 Gigabit Ethernet, wavelength division multiplexing, remote sensing, and medical applications.