ObjectiveMetabolomics is a promising approach to the identification of biomarkers in plasma. Here, we performed a population-based, cross-sectional study to identify potential biomarkers of alcohol intake and alcohol-induced liver injury by metabolomic profiling using capillary electrophoresis-mass spectrometry (CE-MS).MethodsFasting plasma samples were collected from 896 Japanese men who participated in the baseline survey of the Tsuruoka Metabolomics Cohort Study, and 115 polar metabolites were identified and absolutely quantified by CE-MS. Information on daily ethanol intake was collected through a standardized, self-administered questionnaire. The associations between ethanol intake and plasma concentration of metabolites were examined. Relationships between metabolite concentrations or their ratios and serum liver enzyme levels in the highest ethanol intake group (>46.0 g/day) were then examined by linear regression analysis. Replication analysis was conducted in 193 samples collected from independent population of this cohort.ResultsNineteen metabolites were identified to have an association with daily alcohol consumption both in the original and replication population. Three of these metabolites (threonine, glutamine, and guanidinosuccinate) were found to associate well with elevated levels of serum liver enzymes in the highest ethanol intake group, but not in the non-drinker group. We also found that the glutamate/glutamine ratio had a much stronger relation to serum γ-glutamyltransferase, aspartate transaminase, and alanine transaminase than glutamate or glutamine alone (standardized beta = 0.678, 0.558, 0.498, respectively).ConclusionsWe found 19 metabolites associated with alcohol intake, and three biomarker candidates (threonine, guanidinosuccinate and glutamine) of alcohol-induced liver injury. Glutamate/glutamine ratio might also be good biomarker.Electronic supplementary materialThe online version of this article (doi:10.1007/s12199-015-0494-y) contains supplementary material, which is available to authorized users.
Read full abstract