Abstract
The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol/water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol/water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol/water choice.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.