In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. NeuN+immunostaining showed an early and almost complete absence of positive cells in cultures infected with GDVII, an approximately 50% reduction in cultures infected with DA, and fewer changes in L*-1 strains at 3 dpi. Accordingly, staining with chloromethyltetramethylrosamine orange (Mitotracker OrangeTM) as a parameter for cell viability showed similar results. Moreover, at 1 dpi, the strain DA induced higher transcript levels of neuroprotective genes such as IFN-Iβ, IRF7, and IRF8. At 3 dpi, strains GDVII and DA, but not the L*-1 mutant, showed lower PKR expression. In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.
Read full abstract