Abstract

TDP-43, an RNA-binding protein that is primarily nuclear and important in splicing and RNA metabolism, is mislocalized from the nucleus to the cytoplasm of neural cells in amyotrophic lateral sclerosis (ALS), and contributes to disease. We sought to investigate whether TDP-43 is mislocalized in infections with the acute neuronal GDVII strain and the persistent demyelinating DA strain of Theiler’s virus murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae because: i) L protein of both strains is known to disrupt nucleocytoplasmic transport, including transport of polypyrimidine tract binding protein, an RNA-binding protein, ii) motor neurons and oligodendrocytes are targeted in both TMEV infection and ALS. TDP-43 phosphorylation, cleavage, and cytoplasmic mislocalization to an aggresome were observed in wild type TMEV-infected cultured cells, with predicted splicing abnormalities. In contrast, cells infected with DA and GDVII strains that have L deletion had rare TDP-43 mislocalization and no aggresome formation. TDP-43 mislocalization was also present in neural cells of TMEV acutely-infected mice. Of note, TDP-43 was mislocalized six weeks after DA infection to the cytoplasm of oligodendrocytes and other glial cells in demyelinating lesions of spinal white matter. A recent study showed that TDP-43 knock down in oligodendrocytes in mice led to demyelination and death of this neural cell [1], suggesting that TMEV infection mislocalization of TDP-43 and other RNA-binding proteins is predicted to disrupt key cellular processes and contribute to the pathogenesis of TMEV-induced diseases. Drugs that inhibit nuclear export may have a role in antiviral therapy.

Highlights

  • Trans-activation response (TAR) DNA-binding protein of 43 kDa (TDP-43) is an RNA-binding protein primarily present in the nucleus and important in RNA processing, mRNA transport/stability, and mRNA translation [2,3,4]

  • In almost all cases of amyotrophic lateral sclerosis (ALS), neuronal and glial TDP-43 is phosphorylated, cleaved, and mislocalized to the cytoplasm, where it aggregates into stress granules and insoluble inclusion bodies

  • We found evidence of TDP-43 proteinopathy in both Theiler’s murine encephalomyelitis virus (TMEV)-infected cultured cells, with predicted splicing abnormalities, as well as in neural and glial cells of TMEVinfected mice

Read more

Summary

Introduction

Trans-activation response (TAR) DNA-binding protein of 43 kDa (TDP-43) is an RNA-binding protein (as well as DNA-binding protein) primarily present in the nucleus and important in RNA processing, mRNA transport/stability, and mRNA translation [2,3,4]. Since the leader (L) protein of Theiler’s murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae, is known to disrupt nucleocytoplasmic transport [12, 13], we wondered whether TDP-43 proteinopathy occurs in infections with this pathogen; it is known that different RNA binding proteins and different protein compositions of the nuclear pore complex are present in different cell types [14]. GDVII strain and other members of the GDVII subgroup do not persist, but cause an acute fatal gray matter disease. DA strain and other members of the TO subgroup induce a subclinical acute gray matter disease followed by an immune-mediated demyelinating myelitis with virus persistence in the CNS for the life of the mouse. DA-induced demyelinating disease serves as an experimental model of multiple sclerosis (MS)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call