In this paper, we study the performance of mode selections in device-to-device (D2D) communications in terms of end-to-end average throughput, average delay, and dropping probability, considering dynamic data arrival with non-saturated buffers. We first introduce a general framework that includes three canonical routing modes, namely D2D mode, cellular mode, and hybrid mode, which can be combined with different resource allocation restrictions to represent the semi-static and dynamic selections of the three resource sharing modes. A queuing model is developed when the routing mode for every D2D connection is chosen, and an exact numerical analysis and an approximate decomposition and iteration approach are proposed. The performance measures are obtained from the decomposition approach and validated by means of simulation. We further introduce a mode selection scheme that adaptively chooses to semi-statically or dynamically select the resource sharing modes according to the estimated performance measures.
Read full abstract