Thermal warping of large diameter Czochralski-grown silicon wafers as affected by oxygen precipitation is investigated both experimentally and theoretically. The difference of wafer warpage and its shape between the heating and cooling processes is clarified by thermal stresses calculated from temperature gradients in wafers for each process. The critical temperatures for the slip occurrence are determined for the heating and cooling processes as a function of the microdefect density. Then, the optimized process conditions to avoid slip dislocations are obtained experimentally. The critical stress curve for the processed wafers in MOS devices is determined by comparison with the thermal stress curves calculated under various process conditions, and thereby predicting the slip-free conditions for wafers in a row with various diameters from 100 to 200 mm.
Read full abstract